Abstract

This report details the development of heterogeneous field programmable gate array (FPGA)
based hardware to perform data compression in as few clock cycles as possible. The goal of
the project was a full implementation of the core DEFLATE algorithms, however, as detailed
later, during the course of the project it became clear that effort should be focused on the
implementation of the Lempel-Ziv—Storer—Szymanski (LZSS) algorithm. The primary topic
of this report will be the implementation of that algorithm in hardware, and it will include
an overview of FPGA technology and design techniques, AXI protocol interface design and
hardware accelerator performance assessment.
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Chapter 1

Introduction

This report is broken into sections, with each section generally covering a topic and building

on the previous sections. These sections are dispersed across various chapters, which act

as grouping operators on sections. The trait the sections are grouped by is assumed level of

domain familiarity, for example, the sections in chapter 2 try to assume little or no reader

familiarity with the technology involved. The topics are

an overview of data compression generally and DEFLATE in particular

an overview of general FPGA technology

a detailed look at the FPGA used for this project

a detailed description of the accelerator core as designed and implemented

an exploration of the interface protocol used between the on-chip cpu and the accelerator

core

an assessment of the hardware accelerator, including performance and resource utiliza-

tion

The principle goal of this report is to aid the reader in developing an understanding of

the core technologies and techniques involved, and to provide an in depth description of the

particular hardware solution developed.



Chapter 2
Technical Background

The sections in this chapter will each provide an introduction to the general topics of the
project. The aim is to make it easy for the reader to rapidly gain sufficient understanding of
the relevant fundamentals to be able to meaningfully reason about the implementation details
discussed in later sections. As such, this chapter contains no real discussion of the particulars

of the project, and serves mainly to contextualize the later sections.

2.1 Data Compression and DEFLATE

2.1.1 Data Compression

Data compression is a fundamental technique in computer science. The goal of data compres-
sion is to reduce the number of bits required to meaningfully represent some piece of data.
This definition is important, as different domains have different definitions for meaningful
representation. As an example, a meaningfully compressed representation of an executable
set of instructions (a binary) is one which, when the compression process is reversed (the
data is decompressed), produces an executable which behaves identically to the original ex-
ecutable. This is very different from a meaningful representation of a novel, which requires
perfect reconstruction of the input data stream, or an audio file, which can tolerate significant
differences between the original data stream and decompressed stream, due to the limits of

human hearing.

The above examples hit upon a key dichotomy in the field of data compression, be-
tween lossy and lossless data compression. A lossy data compression algorithm is one which
does not perfectly reproduce it’s input when decompressed, generally by leveraging domain-
specific traits about the input data to reason about segments which are ”safe” to remove, as
they are not required for whatever process the data is used for. One could consider an op-
timizing compiler a type of lossy compressor, taking the executable example above, albeit a
uni-directional one, as it is not possible to reconstruct the input stream. Alternatively, loss-

less data compression is data compression which perfectly encodes everything about the input
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data, ensuring perfect reproducibility at the cost (generally) of some reduction in data size
post compression. Lossless compression algorithms are more generally applicable than lossy

ones, as they make no assumptions about the data they are compressing.

The core focus of this project is two lossless compression algorithms, Lempel-Ziv-Storer-
Szymansk (LZSS)! and Huffman coding. The core operation of LZSS is to replace sequences
of bytes in some stream of data with a reference to another location in the data stream at
which the same sequence of bytes occurs[1]. It achieves this by maintaining a lookahead
buffer, B, into the input stream of bytes, and a sliding window, W, of the N previous
bytes seen in the input stream. Generally, W is significantly larger than B, on the order
of 4096 bytes to 15 bytes. As each byte in the input stream is pushed into the encoder, it will
iterate through all positionsin W searching for the longest string of bytes which prefix B,
referred to as the longest prefix position. Once the longest prefix position is found, the encoder
will output either the literal byte which was just pushed, or, if the longest prefix is sufficiently
long, the number of steps backwards from the current position of the encoder in the input
stream to the longest prefix position, and the length of the prefix. Using the numbers above, a

position/length pair could be encoded in 16 bits or 2 bytes, so any substitution longer
than 2 bytes would be worth doing. Algorithm 2.1, modified from [2], provides a high-level

pseudo-code description of the LZSS sliding-window concept.

Algorithm 2.1: LZSS Algorithm

while input is not empty do

1

2 prefix := longest prefix of imput that begins in window
3

4 if prefix exists then

5 i := distance fo start of prefix

6 1 := length of prefix

7 ¢ := char following prefix in input

8 else

9 i=0

10 1:=0

11 c := first char of input

12 end if

13

14 output (i, 1, c)

15

16 s := pop 1 + 1 chars from front of input
17 discard 1 + 1 chars from front of window
18 append s fo back of window

19  repeat

The Huffman coding algorithm is a variable-length encoding algorithm([3]. This means it
encodes symbols, where a symbol is some word-length, i.e. a position/length pair from
LZSS or a byte, with a variable number of bits. The core principle of operation of Huffman

coding is to encode frequently occurring symbols with as few bits as possible, at the cost of

ILZSS is a variation on the fundamental algorithm LZ77, adding replacement length checking and a liter-
al/reference marker bit at the start of each byte. The two are sufficiently similar that for our purposes they will
be treated as interchangeable.
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encoding less frequently occurring symbols with more bits than the original encoding scheme
required. The implicit assumption of this algorithm is that frequently occurring symbols occur
with such frequency that the compression gains made by encoding them more concisely more
than offset the losses suffered by encoding the less frequent symbols more verbosely, and this

assumption has been found to hold true for most data commonly found in digital systems.

Huffman coding is specifically a method for finding the optimal encoding scheme which
satisfies the above goals. To achieve this, the algorithm takes a 3 phase approach (discounting
the actual encoding of the data). The phases of Huffman coding are

1. calculate frequency weights for all symbols in the data set

2. derive an encoding for all symbols seen, based on frequency weights

3. read the data set as a stream, emitting a code for each input symbol in the data stream
The first phase is described below in algorithm 2.2. Note that the frequency weight of each
symbol can be calculated as the absolute number of times that symbol appears in the input
data or as the number of times it appears in the input data divided by input data size, either
method provides valid input for the next phase of the algorithm. In the pseudo code below,

the absolute frequency is used for convenience.

Algorithm 2.2: Huffman Encoding Frequency Weight Calculation

while input not empty do
if input not in symbol_table
add symbol to symbol_table

symbol_table [symbol] := 1
else

symbol_table [symbol] := symbol_table [symbol] + 1
end if

repeat

o - N N T N

output symbol_table

Once the symbol table mapping a symbol to a weight is constructed, a list of all the sym-
bols in the symbol table, where the first entry is the most common list and the last entry the
least common, is constructed®. To simplify the pseudo code of algorithm 2.3, we will treat
this list as a priority queue, where  pop returns the least frequent item in the queue and

push inserts a new item into the queue in a sorted manner, that is to say, in a position such

that the item above it is less frequent and the item below it is more frequent.

Algorithm 2.3: Huffman Encoding Symbol Tree Formation

datatype symbol is
frequency is number O
left_child is symbol reference empty
right_child is symbol reference empty
value is text empty
bit is boolean 0

end datatype

o L . T N VU R

do

2This ordered list is referred to in the original paper as the symbol ensemble.
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10 if size symbol_queueis 1
11 break

12 end if

13 L := pop symbol_queue

14 R := pop symbol_queue

15 L.bit =1

16 R.bit := 0

17 N is new symbol

18 N.frequency := L.frequency + R.frequency
19 N. left_child := L

20 N. right_child := R

21 push N to symbol_queue
22 repeat

23 R := pop symbol_queue
24 output R

3. In order to pro-

Astute readers will note that algorithm 2.3 is creating a binary tree
duce an encoding for a given input symbol S, one must merely walk the tree in a depth-first
manner searching for the symbol S, and storing all the bit values one has seen so far
once S is found. To make this easier, the above algorithm 2.3 can be modified by adding

N.value := L.value + R.value to the do repeat block, which would allow the
code construction to always take the shortest path to the symbol S, by checking if the left or
right branch of the current node contained S.value init’'s value member. Algorithm
2.4 assumes the above modification and produces the code for a given symbol (assumed to be

a member of the set of symbols in the input data used in algorithm 2.2).

Algorithm 2.4: Symbol Derivation Given Huffman Tree

S is symbol input
N is symbol tree root

Cis text empty

while S is not N do
L := N. left_child
R := N. right_child
C:= C+ N.bit
10 if S.value in L.value
11 N:=L
12 else
13 N:=R
14 repeat

o - N R SO Y O

15 output C

The final phase of the Huffman encoding algorithm is the encoding of the data stream
itself, using the symbol tree built above*. The encoder reads the input data stream a symbol
at a time, emitting a code for each symbol read. The emitted code stream is the compressed

data representation. Reversing Huffman code based compression is as simple as reading the

3The original paper extends this method to allow for N-child trees for any value of N, but as we are attempting
to produces a minimum length binary encoding, this is merely an interesting aside, not particularly useful.

40r more commonly a lookup table built by flattening the symbol tree to increase encoding performance, as
generally the symbol set size § if significantly smaller than the input data length L.
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compressed data stream a bit at a time, storing the bits read in the order they’re read until
they match one of the codes in the symbol-code lookup table. This is guaranteed to validly

decompress the data as no shorter symbol code prefixes a longer one[3].

2.1.2 DEFLATE

DEFLATE is a file format and compression method standard[4], used in ubiquitous software
such as GZIP[5]. DEFLATE operates by applying the two compression methods described
above in order, first compressing an input data stream with LZSS and then encoding the re-
sulting compressed stream using Huffman coding. The DEFLATE standard also includes a
set of file format standards and options, as well as a series of formatting requirements on the
output data stream such as a standard layout for storing the Huffman symbol table described
above. The standards, while important for interoperability between different implementations
of DEFLATE and GZIP, were ignored for this project, as their implementation is not relevant

to any performance criteria measured and they increase the implementation complexity.

2.2 Field Programmable Gate Arrays

Field programmable gate arrays are a digital logic device whose internal configuration can be
changed through some method. The “field” term refers to the fact it is possible to reconfigure
these devices after production. The majority of these devices do not store their internal state
between power cycles, and as such, must be re-programmed on each power up. During devel-
opment this is generally done through a JTAG cable connected to a development board, while
during “deployment” this is often achieved through on-chip self-configuration logic which
can read the chip configuration bit stream from some non-volatile storage medium, such as
EEPROM.

The structure of an FPGA is that of a repeating grid of configurable logic blocks (CLB’s),
whose inputs and outputs are connected via configurable interconnect blocks. Each CLB
will house some combination of combinatorial and sequential logic elements. The primary
basic elements required to understand FPGA design are lookup tables (LUT’s) and flop-flops
("flops”).

2.2.1 Look Up Tables

A lookup up table can be conceptualised as a segment of read-only asynchronous-read mem-
ory (ROM), with an address width of 6 and a single boolean stored in each address location.
This means a single LUT can implement any boolean logic function with up to 6 input co-

efficients®. See table 2.1 for an example of a binary function implemented using a lookup

>More advanced techniques, such as packing multiple fewer-input operations into a single 6-LUT in order to
reduce resource requirements, are also common
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table. This should be relatively intuitive for any readers familiar with the use of truth tables

Table 2.1: LUT Based 3 Input AND Operation

>

_—_— 00O~ =0 oW

Equivalent ROM Address
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7

=)

—_= == O OO O
— O~ O~ O~ oM

—_— O OO oo oo

to describe a logic function. When configuring a 6-LUT to behave as a logic function with
fewer than 6 inputs, the high address bits are simply treated as ’don’t care” signals in the LUT
truth table, that is to say, the pattern of the active input bit truth table output column is just
repeated. For an example, see table 2.2, which represents the implementation of a 3 operand
logic function in a 4-LUT. As can be seen, the ”O” column is simply repeated to allow the

”Unused” input to be treated as a "don’t care”.

Table 2.2: 4 Input LUT Based 3 Input AND Operation

Unused | A | B | C | Equivalent ROM Address | O
0 0100 0x0 0
0 001 Ox1 0
0 0|10 0x2 0
0 0|11 0x3 0
0 1100 0x4 0
0 1101 0x5 0
0 1/11]0 0x6 0
0 1 1]1 0x7 1
1 0100 0x8 0
1 0101 0x9 0
1 0|10 OxA 0
1 0|11 0xB 0
1 110]0 0xC 0
1 1101 0xD 0
1 1/1]0 OxE 0
1 1171 OxF 1

The metaphor of LUT-as-memory is an apt one, as a key feature of the FPGA used in this
project is the ability of the LUT’s in the device used to be configured to act not as ROM but
as true read-write random access memory (RAM), with a clock-synchronous write channel
(a write address and data port, with a write occurring on the edge of a clock signal when a
write enable signal is asserted) and an asynchronous read channel (such that the data output

port changes on any change to the read address port, without waiting for a clock edge). This

7
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allows for the design of very flexible memory architecture, which is leveraged in this project

and discussed elsewhere in this report.

The key takeaway is that a LUT is a memory component whose contents can either be
set at device configuration time or be cleared and then set during device operation, as per
the design the device is being configured to run®. An important note about what is referred
to as "LUTRAM?” (or in Xilinx parlance, "TDRAM” for distributed RAM, not to be confused
with the dynamic RAM used in modern computers) is that it is often a quite limited Resource

relative to other on-chip memory resources.

2.2.2 Flip-Flops

Flip-flops are the principle basic logic element used to store a value and update it each clock
cycle. Flops can be configured to behave as edge-triggered flip-flops or level-triggered latches,
however, for the purposes of this report, they will be treated exclusively as rising-edge trig-
gered flip-flops with a synchronous reset line. To make this clearer, see figure 2.1. Note that
the input signal D is only propagated to the output port Q on a rising edge of clk, and the
flop is only cleared by reset signal R on a rising edge as well. The FPGA used in this project
can support many different configurations of the register elements it uses, however, this is the

configuration most commonly used for this project, and as such, understanding it is sufficient.

S I o A
o/
/- J
R /

Figure 2.1: Characteristic Timing Diagram For Flops Used in this Report

Generally, the structure of a given configurable logic block is some number of LUT’s (of
input width range 4 to 8), whose output passes through one or more parallel registers. Figure
2.2 illustrates the layout of the configurable logic blocks in the device used in this project —
on the left can be seen a row of 4 LUTs with 6 inputs each, and on the right and be seen a
pair of 2 registers for each LUT output. The LUT/Flop groups can be configured such that an
input bypass the LUT to be fed directly into the flip-flops on the right hand side, and they may
also be configured such that the output from the LUT bypasses the flip-flop entirely.

’Run” here is a misnomer, it would be more accurate to say “the design the FPGA is being configured to
be”, however, that is not very intuitive. For the purposes of this report, a hardware design being said to be “run”
should be taken to mean an FPGA being configured to act according to the design’s logical function
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Figure 2.2: Configurable Logic Block Layout for Project Device

2.2.3 FPGA Interconnects

As described above, a configurable logic block may be considered a “wrapper” around a set of
LUT/Flop groups. The input and output ports of these CLBs are then tied in to a global mesh
of wires, the connections between which are also configured on power up of the device. This
global network of wires is called the interconnect fabric, and it’s the second key functionality
which makes FPGA’s so flexible (the first being the reconfigurable logic itself). The ability
to tie the output of any given LUT/Flop group to the input of another LUT/Flop group is
what enables the FPGA to fulfil the role of almost any digital hardware, constrained only by

maximum signal propagation delay requirements’.

2.2.4 Hardware Design for FPGA’s

In the previous section, FPGA’s were described as digital devices whose function was con-
figurable, via the loading of a bitstream onto the device. The process of generating these
bitstreams follows this rough outline:
1. Write a file or set of files which describe the digital logic which the FPGA is to be
configured as.
2. Pass this set of files into an elaboration engine, which converts the hardware as written
into a graph-based representation. At this point, the graph-based representation of the

logic designed can be inspected for obvious design errors®.

7 All the extra transistors required to do the dynamic reconfigurable signal routing add significant propagation
delays to any CLB-to-CLB signals, and the flexibility of LUTs means they require significantly more individual
logic gates to implement than any function they are emulating.

8This graph is sometimes referred to as the "RTL” of a design, as the underlying representation is in what

9
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3. Simulate how this digital logic graph behaves with a given set of stimuli (called a test-
bench), verifying that it behaves in the desired manner based on design specifications®.

4. Convert the generic logic graph into one which is composed of elements which represent
the available basic logical elements on the device being targeted for this design!C. This
includes steps like converting abstract gates like ~ OR into truth-table output columns
for LUT configuration.

5. Choose the precise basic logic elements on the physical device which will contain the
logic instantiated as part of the design (this is called placing the design).

6. Choose the exact path the signals in the design will take through the interconnect fabric
on the device (this is called routing the design, which is often conflated with the previous
step into a single stage known as implementation).

7. Parse the synthesised logic graph, constrained by the placement and routing stages, and
convert it into a stream of bits which, when passed to the FPGA’s configuration logic,
configure the FPGA to implement the design (referred to as bistream generation).

The steps above which it is necessary to understand for the purposes of this report (and
to begin working with FPGA’s) have been described in earlier sections, bar 1; the process of
describing the hardware one wishes to implement in a machine-readable format. This is done
through the use of a hardware description language (HDL). Two main hardware description
languages exist, VHDL and Verilog. A third, SystemVerilog, is an offshoot of Verilog which
is mostly inter-operable, with some additional features which improve engineer productivity
by simplifying common tasks. SystemVerilog is the language used to design the hardware
developed for this project, and as such, the rest of this section will be given over to a brief
introduction to the language, in order to make the snippets of SystemVerilog code included in

later segments more readable.

The programming model of SystemVerilog is that of a collection of stateful and stateless
wires, each wire being driven by and driving another, potentially through some logical op-
eration. The only wires not driven by or driving another wire are those connected to device
input and output ports!!. Stateless wires immediately propagate any change on their driver to
anything they are driving, stateful wires only propagate a change to the wires they are driving
as a result of some change in another signal, usually the rising or falling edge of a clock.
Stateless wires are used to model purely combinatorial logic, while stateful wires are used to
model stateful logic, such as the registers described previously. Stateless wires are of type
(intuitively) wire, stateful wires of type reg . See listing 2.5 for an example of a state-

less piece of logic (in this case an OR operation, with operands A, B, and output Y). Readers

is called a “register transfer level” model, which describes digital logic as a set of registers and connections
between registers. This report will conceptualise this as a signal graph for the sake of simple intuition.

9Various verification techniques exist. The exact verification steps undertook for this project are discussed
elsewhere in this report.

10pJease see the glossary for project device details.

"0r in some cases non-programmable on-device logic, such as the on-chip CPU embedded alongside the
programmable logic in the Zynq device used in this project.

10
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should note the use of assign to indicate the wire Y will always be driving the result of
the operation A | B, and will immediately propagate any changes resulting from a change

in A or B to any wire Y is driving!?.

Listing 2.5: SystemVerilog Stateless Logic Example

input wire A, B;
output wire Y;

assign Y = A | B;

The always block is necessary to write SystemVerilog code involving stateful logic.
The always block defines a segment of logic whose assignments are evaluated every time a
certain condition is met. This condition is called a sensitivity list, and the assignments within
an always block occur whenever this sensitivity list is triggered, that is to say, the reg
wires assigned to in an always block propagate their drivers to the wires they drive when the
sensitivity list is triggered. See listing 2.6 for a demonstration of a sequential logic circuit
being described in SystemVerilog, in this case implementing the same logic as the previous

listing, but with an output whose updates are gated by a clock signal.

Listing 2.6: SystemVerilog Sequential Logic

input wire clock, A, B;

output reg V;

always@(posedge clock) begin
//Y will only propagate changes in it’s value once per clock cycle
Y <= A | B;

end

Readers should note line 6 is a non-blocking assignment operator. Within  always
blocks, all non-blocking assignments are modeled to occur at the same time, whereas blocking
assignments, described with a = rather thana <=, are modeled to occur sequentially, in
the order written. See listing 2.7 for an example of the difference in behaviour between these

assignment types.

Listing 2.7: Blocking vs. Non-Blocking Assignments

input clock, A, B;
output reg X, Y, Z;

always@(posedge clock) begin
Y =X & B;
X =4 ]| B;

I2This is an abstraction, in actual hardware propagation has some delay, which is the primary factor limiting
the maximum frequency an FPGA based digital logic design can operate at.
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Chapter 2 — Technical Background

Z <= X & B;

end

Table 2.3 displays the input values, the values being driven by the output registers before
the rising clock edge and the values being driven by the output registers after the rising clock
edge. Note that the value of Y is derived from the value of X before it’s value is derived
from the value of the A and B input signals at the instant of the rising clock edge, while the
value of Z is derived from the value of X affer it’s value is update, reflecting the new state of
X. This is due to the assignments to X and Z being modeled as having occurred at the same
instant, while the assignment to Y is modeled as having occurred before the assignment to X.
Verilog enforces that all nonblocking assignments occur after all blocking assignments in a

given block.
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Table 2.3: SV Assignment Type Behavioural Differences

Note

Wire | Initial State | Final State
A 0 0
B 1 1
X 0 1
Y 0 0
Z 0 1

Input signal, value does not change
Input signal, value does not change

Y is driven to 1 as X is 1 at time of assignment
Z is driven to 0 as X is O at time of assignment

SystemVerilog would not be very useful if every wire had to be declared individually, as

working with logic to implement common requirements such as 32 bit integers would quickly

become unmanageable. As such, SystemVerilog has the concept of arrays. Listing 2.8 has an

example of a couple of different useful array declarations and uses, and their internal layouts.

Note that both registers and wires can be declared as arrays, and declaring multi-dimensional

register arrays is the most common memory generation technique!?.

Listing 2.8: SystemVerilog Array Types

//Some little endian bytes:

//A byte width wire, whose memory layout is:

//1X, X, X, X, X, X, X, X]
wire[7:0] byte;

//A pair of bytes, whose memory layout is:
//IIX, X, X, X, X, X, X, XI, //IX, X, X, X, X, X, X, X]]

wire[7:0] two_bytes[1:0];

//Note the bit addresses within the byte are as follows:

//17, 6,5, 4, 3, 2, 1, 0]

//The declaration can be read as "wire of width seven down to 0"

//Similarly, arrays can be declared as big endian:

wire[0:7] big_endian_byte;
//The above’s address layout is:

//10, 1, 2, 3, 4, 5, 6, 7]

//This is uncommon, and not used in this project

//Declaration of 4 kilobits of and 4 kilobytes of memory

reg four_kilobits[4095:0];
reg[7:0] four_kilobytes[4095:0];

Finally, SystemVerilog provides a method for “wrapping” a segment of logic into a mod-

ule, which provides hierarchical abstraction and allows for multiple copies of a module to be

instantiated as part of another module. SystemVerilog designs declare a top module, whose

13Using vendor-specific macro instantiation being the alternative.
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input and output ports are then mapped to input and output pins on the device during imple-
mentation, and whom all other modules in the design are a submodule of. Listing 2.9 provides
a simple example of a top module and a submodule, with the top module instantiating mul-
tiple copies of the submodule (readers should attempt to discern the logical function being

implemented here in order to test their understanding so far, and then see footnote!#).

Listing 2.9: SystemVerilog Modules

module sub_mod(
input wire A, B,
output wire Y

);
assign Y = A & B;

endmodule

module top_mod(
input wire clk, A, B, C, D,
output reg Y

)

wire intermnal_1, internal_2, internal_3;
//Module instantiation:

sub_mod s1(A, B, internal_1);

sub_mod s2(C, D, internal_2);

sub_mod s3(internal_1, internal_2, internal_3);

always@(posedge clk) begin
Y <= internal_3;
end

endmodule

2.3 The Zynq Heterogeneous FPGA

So far, the FPGA devices discussed have been homogeneous, that is to say, they have consisted
only of the programmable logic region and some configuration logic to load the bitstream into
the programmable logic region. Modern FPGAs are significantly more complex, contain-

ing many “hard blocks'>”, which are non-configurable regions which perform some function

14The logic designed is a 4 port AND gate, with a clock synchronous output.

15Called as such because they cannot be reconfigured. FPGA terminology commonly divides between “hard”
and “soft” logic regions, with soft logic being configurable by the design engineer, and hard logic having a fixed
function.
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which is sufficiently common that it is worthwhile to design dedicated silicon for it, such as
large regions of on-chip RAM or digital signal processors (hard blocks capable of perform-
ing mathematical operations with a far lower propagation delay than instantiated soft logic).
These modern FPGAs are still considered purely programmable logic devices, however, due
to the flexibility of the connections to and from any hard blocks they contain, granted by the
hard blocks also being tied in to the interconnect fabric of the FPGA.

A common design pattern when using FPGAs was to create (or use an already existing)
’soft core”, which was a microprocessor instantiated in programmable logic, to handle the
design tasks more suited to a software environment, such as user interfacing. The soft core
would be used alongside a high-performance “accelerator” core, which performed some task
which would rely on the advantages FPGAs offer over traditional CPUs; extreme parallelism
and pipelining of multi-stage algorithms, as well as designing of hardware to achieve in a
single clock cycle what would take a cpu many dozens of cycles. To address this common
pattern, particularly in the context of rapidly increasing design complexity, driven by an in-
creased focus on multi-role devices!®, the major FPGA vendors released what are termed
heterogeneous FPGA devices, which include a full-fledged processor as a hard block within
the device alongside the traditional programmable logic. The primary benefit of including
the CPU, which is generally a single or multi-core ARM processor, in the same package as
the FPGA, instead of designers including it as a second device within a full system, is that
the physical proximity between the CPU and the programmable logic allows for extremely
high-bandwidth interfacing between what is termed the processor subsystem (PS) and the

programmable logic (PL).

The device used for this project is a Zynq UltraScale+ heterogeneous FPGA!”, developed
and sold by Xilinx, Inc. The programmable logic region of the device includes 70,560 of
the 6-input LUTSs previously described, as well as 141,120 registers[6]. 28,800 of the 6-LUTs
are able to be configured to act as random-access memory. Alongside the programmable logic
region, the device includes an ARM processor subsystem, which includes 4 ARM Cortex-A53
processor cores, a pair of Cortex-R5 real-time processor cores, and a ”Platform Management
Unit” to coordinate the 6 processors listed previously. It also incorporates a GPU to handle

video processing. It is an extremely capable device.

16For example, an FPGA in a hardware design might be acting as an analog/digital bidirectional interface, a
signal processor, a display driver and a CPU to run a lightweight operating system, all at once.
"The exact device code is “xczu3eg-sbva484-1-e”, and it is embedded in an Ultra96v2 development board
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Hardware Acceleration and Data

Compression

The general goal of the sections in this chapter is to take a closer look at the algorithms, tools
and concepts discussed in previous sections, and to think about how they relate to each other.
If the previous sections focused on building concept familiarity, the following chapters will
focus on pursuing concept synthesis. As such, the first section of this chapter will explore the
opportunities the devices described in section 2.3 present. Its focus will be on the benefits and
costs of the different hardware architectures, and therefore programming models, that both
processors and programmable logic present. The section will finish with a brief introduction
to the protocol used to communicated between PS and PL, and a short exploration of how

these distinct models may complement each other.

The sections following the first of this chapter will apply the lessons learned in the first to
the particular problem this project is focused on, and will start with a brief complexity and,
as is often more relevant in multi-domain design, structural analysis of the DEFLATE algo-
rithms. Following that, the implementation details of the hardware designed to address the
principle goal of the project, high performance data compression using the algorithms lever-
aged by DEFLATE, will be outlined. Sections that were found to be particularly interesting
or challenging will be highlighted and explored, in the hope that the reader may take from
this chapter an insight into the hardware developed and the reasoning behind certain design

decisions.

3.1 Hardware Acceleration and PS/PL Interfacing

3.1.1 Hardware Acceleration

The term hardware acceleration, in this report, refers to the use of digital hardware imple-
mented in programmable logic to perform some algorithm or piece of an algorithm, which

otherwise would have been carried out by software running on a processor, in order to improve
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total system performance. The hardware, referred to as an accelerator core, is interfaced to
the processor subsystem using some interface standard. In the case of this project, and Xilinx
hardware in general, the interface standard is the Advanced Extensible Interface (AXI), which
is part of the ARM Advanced Microcontroller Bus Architecture (AMBA)[7].

The goal of hardware acceleration is to leverage the strengths of the hardware domain to
complement the weaknesses of traditional processor focused systems, similar to the goal of
the Zynq project, which is to leverage the strengths of software design to complement the
weaknesses of traditional hardware design workflows. In order for us to gain a strong under-
standing of hardware acceleration, it is necessary to understand the strengths and weaknesses

of both hardware and software based problem solving.

3.1.2 Processor Architecture, Benefits and Costs

Modern processors are dizzyingly complex, a brief look at the current x86 instruction set
makes that clear. Fortunately, some fundamental architectural principles remain as “fixed
points”, from which we may conduct a very generalised overview of the strengths and weak-
nesses of processors to solve a given design problem. Ignoring things like on-chip cache,
instruction pipelines and speculative execution processors generally consist of

e an arithmetic and logic unit (ALU), with two inputs and an output, which performs

some mathematical or logical operation on its inputs to produce an output

e a set of “register files”, capable of storing a value of the same width as the processor
(i.e. 64 bits in a 64 bit processor architecture), which can behave as inputs and outputs
for the ALU

e A program counter, which points to the position in the instruction memory (which is not
necessarily different from data memory) where the next instruction for the processor to

execute is located

e some control logic, which performs operations like reading from and writing to memory,
fetching the instruction at the program counter, and reading from and writing to the
program counter

The general operation of a processor can be seen as a cycle of ferch— decode— execute

— write — repeat. The processor fetches the instruction at the program counter, decodes it
into an operation and the operands, performs the operation described, writes the operation to
either a register or memory location (depending on the operation), and then starts again. The
program counter generally simply increments each cycle, however, its value can be directly
controlled by the processor using special instructions called “branches” or “jumps”. These
instructions are how structures like if, while and function calls are implemented in
software. The key piece of information here is that a processor may only execute instructions

one at a time and one after the other, that the processor is a serial, sequential device.

There are two main benefits modern processors bring, when compared to FPGA based
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design solutions: they are blazingly fast, and they are easy to work with. The Cortex-AS53
processor cores in the PS of the device used in this project run at 1,200 MegaHertz, while
it is fairly challenging to design FPGA hardware that can handle a clock speed above 200
MHz, and approaching 300 MHz with a design of any reasonable complexity can become
Sisyphean!. Humans are well equipped to understand sequential logic (so well equipped in
fact that we assume sequential logic even where none exists[8]), and as such the sequential
execution model of software development is fairly intuitive to us. Layer on top of this decades
of free and open-source tools and libraries being developed and made publicly available, and

the approachability of software based system design is obvious.

Something of a footnote which is critical in some applications is that most processors are
not timing reliable, that is to say, the number of clock cycles required to execute a piece of
software cannot be predicted perfectly. This is due to features such as transparent on-chip
data caching, speculative execution (a processor will begin executing both branches of an

if statement before the result of the predicate is known) and instruction pipelining making
code path execution time unpredictable to the precise clock cycle. This is occasionally very

important, such as in high-speed telecommunications or vehicular® guidance systems.

3.1.3 Programmable Logic, Benefits and Costs

The structure of programmable logic has been outlined in previous sections, so here we will
focus only on how that structure can be used to complement an processor running some piece
of performance critical software 3. Since FPGAs provide near-infinite flexibility at the cost of
maximum frequency, the question of how to complement a software system using hardware
can best be answered by considering what a processor cannot do, rather than what an FPGA
can do. A processor cannot generally

e execute multiple instructions at the same time
e execute the same instruction with multiple input and output groups
e execute instructions involving more than 2 operands

e execute instructions using values in memory, even on-chip cache, as the operands (save

for the relevant load/store instructions to move values into and out of registers)
Exceptions exist to all of these, such as x86 vector instructions and using multi-core CPUs
to do algorithm stage pipelining, but those techniques are device specific or impose significant

overhead, and as such, are ignored here.

IReaders should note the lower bound on modern laptop central processing units (CPUs) is roughly 2200
MHz, although these CPUs scale their clock speed dynamically to save power. Most can also “boost” up to 3500
MHz, which is, in the author’s opinion, obscenely fast

2«Vehicular” here meant in the “kill vehicle” sense, not the “road vehicle” sense, although the latter is be-
coming more common.

3Here, performance critical is taken to mean the software must complete the task it is designed to complete
as rapidly as possible. This is distinct from the more stringent definition of performance criticality, which is
software which must complete its task within a certain amount of time or not complete it at all.
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It is necessary to take brief aside here to discuss algorithmic structure, and the represen-
tation of such. So far, pseudo code has been used to describe algorithms, however, another
useful way to describe and reason about algorithms is as a graph of operations, each operations
input being tied to another operations output, bar the first and last operation(s) in the graph.
Readers should find this reminiscent of the Verilog programming model described in section
2.2.4. Figure 3.1 shows a simple data graph, with 3 inputs and 1 output, which implements
the mathematical operation Y = (A + B) * C. Note the diamond-shaped objects are operations,
and when execution order is being discussed, the green shaded operands are the ones being
executed during a given cycle (clock cycle in the case of PL, fetch-decode-execute-store cycle
in the case of PS).

‘ Input A }—r ADD* — [ Output

W

| Input B ‘ | Input C

Figure 3.1: A Simple Data Graph

With this understanding of data-graph algorithm representation in hand, we can explore
two ways in which FPGAs can be used to complement processors: pipelining and parallelism.
Parallelism allows the evaluation of multiple input/output groups and operation sets at once,
and is useful when an algorithm which is run inside some form of loop does not rely on
the result of the previous loop to execute the next. The term used to describe this algorithm
property is its data dependency. Algorithms 3.1 and 3.2 are examples of algorithms which are
not and are data dependent, respectively.

Algorithm 3.1: ”An Example of Data Independency”

i is number 0

while i is less than size input_array do

1
2
3 input_array [i] := input_array [i] + 1
4 i=1+1

5

repeat

Algorithm 3.2: ”An Example of Data Dependency”

i is number 1

while i is less than size input_array do
input_array [i] := input-array [i—1]+ 1
i=1+1

L T

repeat

The two algorithms presented above may be viewed as having the data graphs (for the first
and second loop iteration) seen in figures 3.2 and 3.3. From these diagrams, it is clear that the

result of the second addition for algorithm 3.1 is completely independent from the result of
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the first addition, whereas the result of the second addition for algorithm 3.2 is dependent on
the result of the first. As such, if we were to execute both additions at the same time for both
algorithms, the result stored to the input array would be valid for algorithm 3.1 but invalid for
algorithm 3.2.

Loop Iteration O

input_array[0] }—) ADD 1 4){ input_array[0]

Loop Iteration 1

input_array[1] }—) ADD1 4% input_array[1]

Figure 3.2: Data Independency

Loop Iteration O

input_array[0] }—b ADD1 4){ input_array[1]

Loop Iteration 1

input_array[1] }—b ADD1 4){ input_array[2]

Figure 3.3: Data Dependency

FPGAs allow for this form of “loop unrolling”, which is a huge advantage over proces-
sors in the case of algorithms which posses this data independency property. However, even
for algorithms that do have some data dependency between loop iterations, FPGAs can still
engage in pipelining, which is the execution of every stage within the algorithm loop at the

same time. For example, given the algorithm 3.3

Algorithm 3.3: Simple Pipelineable Example
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i is number 1

while i is < size input_array do
input_array [i] := (input.array [i] + 1) * 2
i=1+1;

[ N T O VO R

repeat

Figure 3.4 present the above algorithm with each operation within the loop (addition,
multiplication) being executed at the same time. This example brings to us the concepts of
throughput and latency. Throughput is the number of results per cycle, and latency is the
number of cycles between pushing an input into a system and seeing a result from the system.
The throughput of the fully pipelined version of algorithm 3.3 is 1, as a result is received
on the output once per cycle, bar the first cycle, while the latency is 2, as the system must
carry out 2 operations on an input before presenting the respective output. An equivalent
implementation of algorithm 3.3 in software would have a latency of 2 and a throughput of
0.5. Further, algorithm 3.3 could be executed in parallel as well as pipelined, for example, 4
copies of the data graph could be instantiated in hardware (called a loop unrolling factor of
4), and then the throughput would be increased to 4, 8 times higher than the software based

solution.

Cyele 0

input_array(0] }—b ADD 1 input_array[0]

input_array[0] + 1

Cycle 1
input_array[1] }—> ADD 1 —»_ MULTIPLY 2 4>{ input_array[0]
input_arrayf1] + 1 (input_arrayf0] + 1) * 2
Cycle 2

input_array[2] }—b ADD1 ——»<_ MULTIPLY 2 4>{ input_array[0]

Figure 3.4: Simple Pipelining Example

3.1.4 AXI-Lite, a Brief Overview

AXI is the bus protocol used to interface between PS and PL. AXI takes a memory-mapping
model for software/hardware communication, with peripherals instantiated in the PL being
assigned an address region in the memory map of the PS processor cores. This means writing
to a particular memory address in software transmits the data being written to the hardware
peripheral, and reading from that address reads data back from the hardware peripheral. AXI
uses the concept of channels, with 5 channels being defined, which are the

e write address channel
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write data channel

e write response channel

read address channel

e read response channel

Table 3.1 presents the signals important to this project, and which end of the bus they are
driven by. This project uses a reduced version of AXI, AXI-Lite, which greatly simplifies the
implementation of the bus in hardware, at the cost of greatly reduced throughput due to lost

support for multiple consecutive reads or writes after only a single transaction.

Table 3.1: AXI Signal Reference

Name Driver
Write Address Valid M
Write Address Ready S
Write Address M
Write Valid M
Write Ready S
Write Data M
Write Response Valid S
Write Response Ready M
Write Response S
Read Address Valid M
Read Address Ready S
Read Address M
Read Valid S
Read Ready M
Read Data S
Read Response S

AXI deals in what are termed as transactions, which are always initiated by the master
and, under the AXI-Lite specification, always involve a single transfer of data. A transaction
is initiated by the bus master asserting a valid signal on the addressing channel, either read
or write. Following this, the relevant address signal for that channel (Write Address or Read
Address) is held constant until both the valid and ready signals for that address channel are
asserted, at which point it is assumed the slave has begun processing the request of the master.
Following this, the slave will assert a valid signal on the data channel (write valid or read
valid), signalling that the write data or read data line is valid. This will then hold until both
the data channel valid and ready signals are asserted, at which point it is assumed the master
has read the request response, and these signal are no longer required to be constant. In the
case of writes, the slave should assert write response valid, which implies the write response
signal is valid, after both the write valid and write ready signals are asserted at the same time.
The write and read channel group response signals are used to indicate a failed read or write, as

defined by the AXI specification[7]. Figure 3.5 demonstrates a typical AXI write transaction,
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~ [ M_AXI_DP Write

» Qutstanding Reads
» Qutstanding Writes
~ W Channels
- ACLK
o ARESET
> W Read Address
Read Data
v T Write Address
> W AWADDR[31:0]
i
w AWREADY
~ T Write Data
» B WDATA[31:0]
W WVALID
. WREADY

~ T Write Response

i BVALID
& .BREADY

Figure 3.5: A Typical AXI-Lite Write Transaction

between a Xilinx Microblaze soft* processor core and the accelerator core developed for this

project.

4“Soft” here to mean instantiated in programmable logic
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It is highly recommended that readers interested in developing a further understanding of
the AXI-Lite protocol read [9], which is a truly fantastic in depth introduction to the protocol

used here, and was an invaluable resource to the author.

3.1.5 PS and PL Suitable Tasks

The strengths of processors and programmable logic may be summarized as follows; proces-
sors are good for rapid / low cost development and implementation of standard protocols due
to the ease of use and plethora of open source implementation of almost every standard on the
planet. Processors are also useful for any application which requires complex memory archi-
tecture (such as hash maps or linked lists), as implementing specialised data structures beyond
simple arrays is complex and resource expensive in hardware. Programmable logic is useful
for tasks which require consistent and reliable timing, and for improving the throughput of
some expensive set of operations carried out in the inner loop of an algorithm. With that in
mind, the next section will take a critical look at the DEFLATE algorithms, focusing on their

suitability for hardware acceleration.

3.2 Algorithmic Analysis of DEFLATE

To decide which parts of a given algorithm or set of algorithms to accelerate in hardware, the
following set of questions should be answered before investing resources in developing an
accelerator:

1. Is performance critical for the application?

2. Have all the performance gains possible with a pure software approach been achieved?

3. How will a heterogeneous solution be deployed?

4. Will gains made using a heterogeneous solution be sufficient?

5. How suitable is the application for hardware acceleration?

Taking DEFLATE as our exemplary problem, we can most address these as follows:

1. The goal of this project is to improve algorithm performance as much as possible, so
performance is critical by definition.

2. DEFLATE is an old and well known algorithm with a major canonical open source
software implementation (GZIP), the code of which has been studied and optimized by
countless engineers. It is unlikely any performance gains are available in the software
domain.

3. Deployment is not relevant as this is an academic, not an industrial, project, although
one can envision many solutions involving the gigabit per second Ethernet interfaces it
is possible to instantiate on the device used.

4. As the goal of the project is just performance improvement, any gain made will be

sufficient.
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Question 5 of the suitability questions is somewhat trickier to answer, as we must look
at the details of the algorithms in question in order to understand their suitability. Before we
do so, a quick note about “big O” notation. Algorithmic time complexity can be expressed
in terms of the number of operations carried out per item in the input data set, for example,
algorithm 3.1, which was used to demonstrate a data dependency free algorithm, carries out an
addition per input item, or n operations, while algorithm 3.3, which was used to demonstrate
pipelining, carries out an addition and a multiplication per input item, or 2n operations. When
talking about algorithmic complexity, it is often assumed # is so large that multiplying it by
any value is meaningless, and algorithms are simply categorized in terms of their “order”
relative to n. both algorithm 3.1 and 3.3 are as such considered O(n) algorithms, which can
be thought of as “each input item is ‘looked at’ effectively once”. Algorithms on the order
of O(n), especially when they carry out a short, simple set of operations per input item?, are
said to be very inexpensive, beaten only by algorithms which achieve some work without

considering the whole input data set (such as binary search).

3.2.1 Huffman Coding Acceleration Suitability

Huffman coding involves two primary loops: the calculation of frequency weights and the
derivation of variable-length codes for each symbol. The finding of the symbol weights is
extremely inexpensive, on the order of O(n) with an n involving some hash function and an
addition (to lookup the symbol in a symbol table and increment its frequency count). For
smart implementations involving symbols with a bit width definitely less than some number,
the hash function can even be optimized away in favour of treating the symbol as an unsigned
integer and using it to index into an array. This is not exceptionally memory efficient, but
for slender symbols, the trade off can often be worth it. Taking this into account, the finding
of symbol weights is not suitable for hardware acceleration. The slowest part of this loop is
often simple main memory reads and writes, which an FPGA can rarely improve, and taking
into account that the second primary advantage of processors is their incredible speed, trying

to beat a processor at this would be foolish.

The second primary loop of huffman coding appears at first to be a good candidate for
hardware acceleration; it involves quite a few steps and operating on multiple operands at
once, which implies it would be suitable for pipelining. Unfortunately, each iteration of the
loop is also completely dependent on the result of the previous stage, making it unsuitable for
parallel execution, and the concept of an ordered queue of complex object, while certainly very
achievable in hardware, is tricky and error-prone. On top of this, the goal of that algorithm
is to build a binary tree of values, which is another tricky data structure of indeterminate size
whose principle function is based on memory references. These are not traits of an attractive

acceleration target.

5“When n is small”
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Huffman coding may be taken to have a third primary loop, the actual encoding of the
symbol stream. This loop is similar to the first with a couple of exceptions; it uses a lookup
table to convert a symbol into the variable length code representing the symbol, and it does
not have the data dependency limitation of the first. Due to the already fairly low cost of this
loop, it was not deemed suitable for acceleration. For the above reasons, it was decided that
the Huffman coding algorithm was not suitable for acceleration as part of this project, and as

such, the rest of this report shall discuss the acceleration of LZSS.

3.2.2 LZSS Acceleration Suitability

The LZSS algorithm is described at a high level in listing 2.1. From that listing, it can be
seen that the algorithm has a primary outer loop, which moves across the input data set one
byte at a time. The size of this input data is the N used for time complexity analysis of this
algorithm. Within this outer loop, the algorithm requires finding the longest run of bytes in a
sliding window of the last M bytes seen by the encoder which are a prefix of the next K bytes
to be processed. Generally, relative to N, K is very small (15 bytes in the case of this project),

which M can be quite large (4096 bytes in this project).

An algorithm which carries out this prefix location will require K x M byte comparisons,
or 61,440 comparisons in this case of this project.LZSS requires that this prefix searching is
done for every byte pushed into the encoder®, which are not part of a substitution (following a
substitution the number of bytes replaced by the substitution are pushed through the encoder
into the sliding window without being searched for). This the worst case time complexity
— appendix A.l explores the relationship between N and the number of comparisons done
in more details. Given the processor architecture outlined previously, it can be assumed that
each comparison takes a load — execute — store cycle’. The complexity of the inner loop
of LZSS makes it an excellent candidate for hardware acceleration, and so, it is the algorithm

segment this project is focused on. Figure 3.6 illustrates the search process as described.

6 Assuming a full sliding window and an input set which never has a 15 byte replacement candidate, Sensi-
ble encoder designs will stop searching the sliding window for a replacement early if it has checked as many
positions as have been pushed into the sliding window or if it has found a max length substitution.

7Vectorization” of this process would allow comparison of multiple bytes per cycle, and this can be used to
improve performance somewhat, however, it is not a panacea for the time complexity of this algorithm.
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Figure 3.6: LZSS Substitution Searching
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Solution Design, Verification and

Evaluation

With the selection of the inner loop of LZSS for hardware acceleration, certain key algorithm
details become important to investigate; how to find the length of a shared prefix between
two 15 byte strings, the memory structure of lookahead buffers and sliding windows, and the
internal state machine of the inner loop. The following sections explore those topics as they
were addressed in this project, and attempt to illustrates and illuminate the design thinking

behind the accelerator architecture.

4.1 Finding Prefix Length

Finding the length of a shared prefix between two strings is a trivial problem by most stan-
dards, addressed in listing 4.1. The prefix length calculation algorithm presented in listing 4.1,
however, takes at as many cycles (clock or load — execute — store) to complete as the length
of the prefix found. If the upper bound of the prefix length is known, e.g. if the maximum

length of one of the input strings is known, hardware can do significantly better.

Algorithm 4.1: Trivial Prefix Length Calculation

1 i is number 0

2 while inputstr_1 [i] is inputstr2 [i] do
3 i=1+1

4  repeat
s

6

output i

Table 4.1 outlines a lookup table based approach to prefix length finding, for an upper
bound of 3. Given 2 strings of length 3, the input columns are boolean values representing
whether bytes 1, 2 and 3 of the string matched. This would appear suitable to the LUT
based architecture of modern FPGAs, however, this approach requires a memory space of 2"V
addresses, where N is the string length upper bound. For this project, N = 15, which would
require an address space of 32,768. This is not feasible for any FPGA based digital hardware,
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and as such, a different approach must be taken.

Table 4.1: Prefix Finding as a LUT Operation

Byte 1 Match | Byte 2 Match | Byte 3 Match | Prefix Length
0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 2
0 0 1 0
1 0 1 1
0 1 1 0
1 1 1 3

Table 4.1 illustrates how the problem of counting the length of a shared prefix of two
strings may be converted into the problem of counting the number of leading 1’s in a bit vector.
Milenkovi¢ et al. outline a hardware structure for the counting of leading 0’s in a vector of
16 bits[10], in a purely combinatorial way (i.e. the output number changes immediately in
response to a change in the input strings, without being gated by for a clock edge). This
hardware structure is designed to reduce the “depth” of the combinatorial logic involved,
which can be thought of as the number of operations a given change to a driving signal must
propagate through before reaching the next register it will be stored in. The length of the
register to register propagation path of a signal determines how long it takes for the driver of
the output register to drive a valid signal. The clock driving the updating of that output register
must have a period longer this propagation time, and as such, the longest propagation time in

a design determines the maximum clock frequency that design supports.

It is critical to keep logic depth to a minimum to improve design performance, and as
the primary computation done within the inner loop of the LZSS algorithm is this prefix
length calculation, how this calculation is implemented is critical to design performance. The
module used for prefix length finding in this project is shown in listing 4.2. The module
is a derivation of the architecture outlined in [10]. Readers should note this and following
modules’ definitions use some “syntactic sugar”, such as the use of for loops, array slices

and ternary operators, the function of which is explained in listing A.2, in the appendices.

Listing 4.2: Prefix Length Calculator Module

module prefix_len_finder

(
input wire [7:0] str_1[14:0],
input wire [7:0] str_2[14:0],
output wire [3:0] prefix_len
)3

//Bit vector of result of bitwise comparison between input strings

wire [15:0] byte_matches;
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//Reshaping of byte_matches into constituent nibbles 9
wire [3:0] nibbles [3:0]; 10
//vector testing whether each nibble of byte_matches consists only of 1’s 11
wire all_one_nibbles[3:0]; 12
//16th bit of byte_matches is always O as input strings 15 bytes long 13
assign byte_matches[15] = 1’b0; 14
//Perform assignments to nibbles and all_one_nibbles as described 15
generate 16
genvar ij; 17

for(i = 0; i < 15; i++) begin 18

assign byte_matches[i] = (str_1[i] == str_2[i]); 19

end 20

for(i = 0; i < 4; i++) begin 21

assign nibbles[i] = byte_matches[(i*4)+:4]; 22

assign all_one_nibbles[i] = &nibbles[i]; 23

end 24
endgenerate 25

26

27

//"Loop" through all_one_nibbles, assigning output prefix length 28
//the index of the lowest nibble which does not contain only 1’s, 29
//plus the number of continuous 1’s that nibble does contain. 30
//This accurately calculates the length of the shared prefix between 31
//str_1 and str_2 32
always_comb begin 33
prefix_len = 15; 34
for(int i = 3; i >= 0; i--) begin 35
if('all_one_nibbles[i]) begin 36
prefix_len = (i*4) + (&nibbles[i][2:0] 7 3 : 37

&nibbles[i] [1:0] 7 2 : 38

nibbles[i][0] ? 1 : 0); 39

end 40

end 41

end 42
endmodule 43

The function of this module is to count the prefix match between two input strings, and
it 1s the core combinatorial logic of the hardware accelerator developed for this project. It
produces this count by first producing a bit vector of length 16, where each bit from positions
1 — 15 are driven by an equality check of the bytes in string 1 and 2 at that position. Position
16 is tied to 0, as the byte matches vector is forced to be of length 16 in order to be broken
cleanly into nibbles, but the length of the prefix match will never be greater than 15.
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Once this vector of byte matches has been created, a second vector of bits of length 4 is
created. This vector is assigned a boolean value indicating whether each nibble! of the match
vector contains only 1’s. This vector of all one nibble test results will be referred to as the
nibble test vector. The output of the module is assigned the lowest index of a O in this nibble
test vector multiplied by four (as the vector is zero indexed, this accounts for the continuous
run of 1’s in the byte match vector up until this nibble), plus the number of 1’s in the nibble

that the index in the nibble test vector represents.

4.2 Lookahead Buffers and Sliding Windows

The LZSS algorithm calls for a sliding window of, in this project, 4096 bytes, and a lookahead
buffer of 15 bytes. Given position in the input data array P, the lookahead buffer should
contain the bytes in the input buffer as shown in table 4.2. This is implemented fairly trivially
with a simple shift register, where new bytes are pushed into position 15, and registers 14 —
0 take the value of the register above them (i.e. position O reads from position 1, position 1
from position 2, etc.). Listing 4.3 demonstrates in a simplified form the implementation of
this behaviour in this project. Readers should note carefully the use of blocking assignments

to ensure the correct ’trickle-down’ behaviour.

Table 4.2: LZSS Sliding Window Structure

Lookahead Buffer Position | Input Data Position

0 P

1 P+1
2 P+2
3 P+3
4 P+4
5 P+5
6 P+6
7 P+7
8 P+38
9 P+9
10 P+10
11 P+11
12 P+12
13 P+13
14 P+14

Listing 4.3: Lookahead Buffer Implementation

input wire clock;
input wire [7:0] byte_in;
reg [7:0] buffer[14:0];

I A nibble is a bit vector of length 4, “half a bite”, so to speak.
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always@(posedge clock) begin
for(int i = 0; i < 14; i++) begin
buffer([i] = buffer[i+1];
end
buffer[14] = byte_in;

end

The sliding window is a simple rolling buffer, implemented as an register file of 4096
bytes. The window maintains a read and a write pointer, and each time the window is written
to, both read and write pointers are moved forward, wrapping to position 0 at position 4096.
As such, walking backwards through the register file from the current write position and
appending each byte found produces a string of the last 4096 bytes pushed into the window.

This operation is illustrated in figure 4.1.

([ [ [+
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| vh !
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! !
N O Y O

Figure 4.1: Operation of a Rolling Buffer

The requirements of the LZSS algorithm are such that while searching for a substitution
position/length combination, a “slice” of bytes equal in length to the lookahead buffer must
be extracted from the sliding window. Listing 4.4, taken from the accelerator implementation,
displays how, given a read position, a string from the read position to 15 bytes earlier is
constructed, such that the window slice and the current lookahead buffer may be used to drive
the prefix length finding module detailed previously. Note the modulus operator implementing

the wrapping behaviour of the rolling buffer.

Listing 4.4: Window Slice Implementation
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reg [7:0] window[4095:0];
wire [7:0] window_slice[14:0];
reg [11:0] cur_read_pos;

generate
genvar 1i;
for(i = 0; i < 15; i++) begin
assign window_slice[i] = window[(i + cur_read_pos)% 4096];
end

endgenerate

4.3 State Machines and Reference Searching

The previous two sections describe how doing a 15 byte prefix length calculation is achieved
in a single clock cycle while still maintaining a shallow enough logic level to allow a rea-
sonable clocking frequency. This means the accelerator core can perform an iteration of the
LZSS inner loop in a single clock cycle, a marked improvement on the 15 load — execute
— store cycles required to perform the same inner loop in software. However, the accelera-
tor core must now be able to store some internal state, which will encode what operation the
accelerator should be doing on any given clock cycle. The fundamental states chosen for the
accelerator core to occupy for this project are: idle, see arching for a reference, and clearing

its internal memory.

To understand the accelerator core state machine, the core input and output signals should
be understood. Listing 4.5 shows the input and output signals of the core. On the rising edge
of the input clock, the core takes some set of steps and then evaluates the transitions available

to it.

Listing 4.5: Accelerator Core Interface

module max_prefix(
//Inputs
input wire clk,//Input clock signal
input wire rst,//Core reset signal
input wire push,//Control signal, forces byte_in to be pushed into the
lookahead buffer if the core is idle
input wire search,//Control signal used in state machine
input wire[7:0] byte_in,//Input byte
//0Outputs
output wire waiting,//Indicates core is idle

output wire busy,//Indicates core is busy, push/search ignored
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output reg res_valid,//Indicates the current output is valid, asserted
when no push or reset has occurred since last search finished
//Substitution search results for this window and buffer combination:
output reg[11:0] max_pos_out,
output regl[3:0] max_len
)3

The core state machine is displayed in figure 4.2. The signals done and clear are internally
generated. Done is asserted when the core has evaluated the prefix length at every position in
the sliding window, when it has evaluated the same number of positions as bytes pushed into
the sliding window or when it has found a substitution of length 15. Clear is asserted when
the core has set all positions in the sliding window to 0 or when it has set the same number of
positions in the sliding window to 0 as the number of bytes written to the sliding window (this

is only reached before setting all positions when less than 4096 bytes have been processed).

search

rst
rst

Figure 4.2: Accelerator Core State Machine

This state machine is implemented using a SystemVerilog  enum, as shown in listing

4.6, in order to make it easier to reason about the code.
Listing 4.6: Accelerator Core State Space Declaration
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typedef enum {
ready,//Able to accept a new byte or start searching
searching,//Busy, searching for match
clearing//Busy, clearing sliding window

} State;

State s;//State tracking variable within core

4.4 Core Interfacing and Software Wrappers

As described previously, the core uses an AXI-Lite interface to connect to any processor in
the design. The principles of AXI-Lite are outlined in section 3.1.4. As discussed there,
the AXI-Lite interface maps the peripheral to a particular memory address or memory range
(as some peripherals will have multiple addressable registers). From the embedded C or
C++ application, interacting with the memory mapped peripheral is done through reading and

writing to memory address in that range.

4.4.1 Interface Particulars

The accelerator core developed for this project operates using a 32 bit wide AXI bus, and only
exposes a single register. This means that the write and read address channels are only used to
initiate a transfer through the associated ready and valid signals, and the actual address sent is
ignored. Further, this core never responds with a failure for reads or writesZ, and as such, the

read and write response channels are simply tied to 0.

Of that single write channel exposed, the core only uses the lower 9 bits. On a write,
bits 0 to 7 are used to drive the byte_in signal shown in listing 4.5, and bit 8 is used as
an optional software reset. The core  rst signal will be asserted on a bus reset, or when
bit 8 in the write data signal is asserted. This is a design feature which allows developers
to reset just the LZSS core, without resetting the entire AXI bus, which may also have other
peripherals on it. A write will stall, meaning write valid is not asserted by the slave, if
a write is performed while the core is asserting  busy , which means that if the core is reset
in software and then immediately written to the processor will hang for as long as it takes the
core to reset, a maximum of 4096 clock cycles. This is by design, in order to avoid the core

dropping write transactions while busy.

When the bus master initiates a read transaction, and res_valid is not asserted (re-

member res_valid is only asserted in the case that the core is currently outputting valid

2There is not case where pushing a byte into the encoder will fail. It may hang while the encoder resets or
conducts a search, but it will not fail.
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substitution values for its current window and buffer state), search is asserted. The core
will then conduct a search, and assert res_valid once the search is complete, which will
in turn cause the AXI-Lite interface wrapper to drive the AXI read data channels with the core
substitution data output, and assert a read valid signal, which it will hold until the processor
asserts read ready as well. The lower 12 bytes of the read data is the position from the front

of the sliding window, and bits 12 to 15 are the length of the substitution found.

The design of the core, with substitution searches being conducted on read, is for a couple
of performance focused reasons: performing search on read allows the controlling software
to push the first 15 bytes as fast as the processor can (as each write transaction takes 2 clock
cycles, one of which is a response which can be sent as the next write is starting), and per-
forming search on reads allows the processor to push as many bytes through the encoder as
were substituted in the case of a valid substitution being found. This allows the accelerator
core to be used as efficiently as possible.

4.4.2 Hardware Platforms

All of the hardware design carried out for this project was through the Vivado 2019.1 FPGA
design tool, which is the developed by Xilinx, Inc. The flow used to develop this hardware
was as follows:

1. Start a project to develop accelerator, without AXI-Lite interface wrapper, and verify
basic functionality.

2. Develop the AXI-Lite interface wrapper in the same project as the core, package core
as an “IP”, Xilinx’s term for a reusable module design for integrating into larger design.

3. Start a new project, and create a “block design”, which is a high level design tech-
nique in which the design engineer visually instantiates and connects different “IP” or
modules. This block design includes both the accelerator core “IP” and whatever pro-
cessor system is being used, either the Zynq processor subsystem or a MicroBlaze soft
processor.

4. Create a “HDL” wrapper around this block design, in order to make it possible for
the Xilinx tools to synthesize and implement the design. The Vivado design suite can
manage this wrapper automatically.

5. Produce a bitstream from this design, and then “export” that bitstream and the hardware
project to the project workspace, in order to make it accessible to the Vivado Software
Development Kit (SDK).

6. Launch the SDK from Vivado, noting that the hardware platform is present due to the
previous export steps, and create a “Board Support Package” (BSP), selecting the stan-
dalone “operating system’ option.

7. Create a new “application project”, selecting the just-created board support package as
the project BSP.

8. Open the “xparameters.h” file in the newly created BSP folder, and search for the ac-
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celerator core name, in order to find the memory address it has been assigned>. There
will be a preprocessor macro defined to map to the correct memory address.

9. Using the memory address macro, write software to interact with the core.

Section 4.5 discusses the process of simulating and verifying the hardware accelerator.
This process is done with the block design displayed in figure 4.3 (accelerator core highlighted
in orange), and the C software application shown in listing 4.7. The software shown was built
and the produced executable linkable format (ELF) file loaded into the MicroBlaze program
and data memory by associating the ELF file with the block design, using the option in Vivado.
This allows the design engineer to verify core functionality and performance without access
to physical hardware, and in an often preferable manner, as debugging is significantly easier

when it is possible to probe every signal in the design.
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reset_ntl >

cll_wiz_1

diff clock_rtl [——l+ cLkanio  ak o
4 resst ocked

" Clocking Wizard

mmmmm blaze_0 microblaze_0 local_memory

|||+ ITERRU

i MicroBlaze ® w1

J[l+ owas
||+ 1ne:
[[[FS
LB ek
SYS_Rst

Reset

MicroBiaze Debug Madle (MDM)

WicroBlaze

Figure 4.3: Core Simulation Hardware Platform Block Diagram

Listing 4.7: Core Verification Software

#include "xparameters.h"

#include "inttypes.h"

int main(){
uint32_t *encoder = (uint32_t *)XPAR_LVSS_ENCODER_BACKREF_O_BASEADDR;
//Testing pushing multiple times without reading
for(int j = 0; j < 2; j++){
for(uint32_t i = 1; i <= 15; i++){

*xencoder = i;

}

uint32_t res = *encoder;

while(res > 0) res = *encoder;//Testing multiple reads without pushing

return(0) ;

3Note that this is configurable as part of the block design.
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4.5 Core Simulation and Verification

The application code in 4.7 pushes and identical 15 bytes of data to the LZSS accelerator core
twice in a row, then reads back the substitution information from the accelerator core. This
allows for the verification of multiple facets of the accelerator; the AXI-Lite interface, the
buffer and window implementations, the prefix length counter and the state machine transi-
tions. The block design pictured in figure 4.3 has two inputs, which are a reset signal and a
differential clock®. The system is simulated by designing a Verilog testbench which simply
drives the reset signal high for a 1000 nanoseconds, and then driving the differential clock at
a frequency of 200 MHz. Listing 4.8 shows how the simulation features of Verilog make this
possible. This testbench is sufficient to verify the core due to the preloading of the processor
cores memory resources with the data from the software application ELF files, which causes
the software application to immediately start executing on the core once the reset signal is

de-asserted.

Listing 4.8: MicroBlaze Simulation Testbench

‘timescale 1ns / 1ps

module mb_tb(

)

reg clk_p;
reg rst_n;

wire clk_n = “clk_p;

initial begin
clk_p = 0;
rst_n = 1;
#1000 rst_n = 1;

end

always #2.5 clk_p <= “clk_p;

//Instantiate the block design "HDL wrapper", and drive its input ports
//with the testbench simulation signals
mb_bd_wrapper mb(clk_p, clk_n, rst_n);

endmodule

This approach allows the observation of the AXI transactions between the acceleration

“The differential clock requires 2 ports, a positive and negative, but is grouped here as a single input
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core and the MicroBlaze processor. Additionally, the Xilinx provided “IP”” module “AXI Pro-
tocol Checker” was used to verify the implementation of the AXI protocol interface wrapper
developed for this project, and was invaluable for doing so[11]. This module monitors the
AXI bus it is connected to for invalid signals, and diagnoses any invalid state it notices. By
way of example, the initial interface implementation did not every drive the write response
valid signal low, as it was reasoned that as writes to the accelerator cannot fail, the write re-
sponse is always validly tied to 0. This is actually a breach of the AXI specification[7], and
caused the processor to deadlock, as the processor tracks the number of “outstanding writes”
on the AXI bus, and a continuously high write response valid and write response ready signal
caused the that counter to overflow. The AXI Protocol Checker was used to diagnose this

problem, and the interface wrapper updated to address it.

When the above described simulation is run, and the AXI bus monitored, a series of 30
write transactions followed by an indefinite number of read transactions can be observed, as
would be expected given the software outlined in listing 4.7. Figures 4.4 through 4.6 show the
AXI bus during simulation. Some details to note are the write transactions occurring in two
clock cycles, the first read transaction taking 19 clock cycles (4.6), which is 2 on each end as
bus overhead, 15 to complete the search, and the subsequent reads taking only 2 clock cycles
(as no new data is pushed to the core and as such the core continues to assert res_valid ).
The read data signal is also useful as it is driven to  0xf00f following the first read, which
indicates an optimal substitution of length 15, 15 bytes behind the current read head. This is
exactly what we would expect given the input data pushed to the accelerator by the control
software.

5,A55 9888 ns

Figure 4.4: Core Simulation Overview
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Figure 4.6: Core Simulation Read Transaction Detail
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4.6 Accelerator Performance and Resource Utilization

Due to an unfortunate lack of foresight on the part of the author and a global pandemic at
time of writing, it was not possible to test the accelerator core performance on hardware.
Due to this misfortune, the accelerator will be assessed in terms of FPGA programmable
logic resource utilization and performance versus the MicroBlaze soft core it was verified
using. Some caveats apply to this evaluation; the soft core is running at the same clock
frequency as the accelerator core, while the Zynq core on the target device for this project runs
roughly five times faster than the accelerator core can achieve, and the MicroBlaze core has
a different instruction set with different performance characteristics than the Zynq ARM AS53
core. It would be a mistake to assume performance versus the MicroBlaze core is indicative

of performance versus the Zynq ARM core.

4.6.1 Resource Utilization and Timing Slack

The Vivado design suite provides various reports of the utilization of a design during im-
plementation. Taking the “IP” design, consisting of the accelerator core and the AXI-Lite
interface wrapper, and bringing them through implementation, the utilization of resources of
interest are presented in table 4.3. The design was implemented with clocking constraint
with a period of 4.7 nanoseconds, which means the implementation software was trying to

implement the design as if it was being driven by a clock running at 212 MHz.

Table 4.3: Accelerator Resource Utilization

Resource Name | Number Used | % Utilization
LUTs as Logic 3671 5.2
LUTs as RAM 9600 33.33

Flip Flops 512 0.36

The design, when implemented with all optimizations turned on, had a worst design slack
of 0.058 nanoseconds, meaning the slowest signal propagation time was 0.058 nanoseconds
faster than the clock period. The extremely low slack indicates 4.7 nanoseconds to be roughly
the minimum period of a clock driving this design, and the safe operating clock speed of the
design is estimated to be 200 MHz, to account for potential propagation delay fluctuations

due to deployment environment.

The high utilization of available LUT as memory resources is due to the sliding window
implementation being targeted at this resource, and the sliding window being quite large at
4096 kilobytes. This resource class was targeted for the sliding window instead of the RAM
hard blocks on the device (block RAM and “Ultra” RAM), despite those resource being far
more plentiful in terms of available storage space, as the flexibility of the distributed RAM
allowed for the single byte write width and 15 byte read width architecture required to achieve

the performance of the hardware accelerator. This is an unfortunate trade off, and a potential
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avenue for future work is to design this somewhat specialised memory architecture in such
a way that it can be implemented using the available hard RAM blocks. If this could be
achieved, this core would use a very low percentage of available device resources, making it

extremely suitable for integration into larger designs.

4.6.2 Performance Comparison

The goal of hardware acceleration is to produce a heterogeneous system which accomplishes
the task some previously software-only system was designed for, faster or more efficiently
than the software system did. As such, one of the most important evaluation metrics of the
hardware system is a direct comparison between the software-only system and the hardware-
software co-design. Table 4.4 presents a comparison between the runtimes of a software-only
system and a heterogeneous system. Both systems were given an input array of length 36,
and both systems produced identical results. Listings 4.9 and 4.10 are the software-only and
the heterogeneous algorithm implementations, respectively. The test software, which ran one
implementation after the other and then output the results to the AXI bus for easy comparison,
was compiled using the GCC which is provided as part of the Vivado SDK. The software was
compiled at optimization level 0, 1, 2 and 3.he internal structure of the test application is
more complex, so the runtime is taken as the difference between simulation time when the
first instruction in each test subroutine is executed and the simulation time when the result
length of the subroutine is written to the axi bus. The design was running at a clock frequency

of 200 MHz for all tests. All runtime in nanoseconds.

Table 4.4: Software vs. Heterogeneous Implementation Runtime

Optimization Level | HW Start | HW End | SW Start | SW End | Speedup
0 1,985 20,060 28,490 | 257,370 12.6x
1 1,900 11,075 15,025 92,920 8.5x
2 1,895 11,115 14,895 98,010 9x
3 1,885 10,720 13,365 96,480 9.4x

Table 4.4 shows that the accelerator significantly outperforms the MicroBlaze processor

core at all optimization levels. 6 includes some discussion of further work which may be done

to further increase heterogeneous system performance gains.

Listing 4.9: LZSS Software Implementation

uint16_t test_software(char *data_in, uint32_t in_len, char *data_out){

uint32_t out_len = 0;

uint32_t 1 = 0;

while(i < in_1len){
uintl6_t cur_skip_pos = i-1;
uint8_t best_skip_len = 0;

uintl6_t best_skip_pos = 0;
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while(cur_skip_pos > 0 && 8
i - cur_skip_pos < 4096 && 9
best_skip_len < 15 10

) { 11

uint8_t cur_skip_len = O; 12

for(uint32_t j = 0; 13

j < 15 &&//15 byte lookahead buffer 14

cur_skip_pos + j < i && 15

i + j < in_len; 16

j++ 17

){ 18

if (data_in[cur_skip_pos + j] != data_in[i+j]){ 19

break; 20

} else { 21

cur_skip_len += 1; 22

} 23

b 24

if (cur_skip_len > best_skip_len){ 25

best_skip_len = cur_skip_len; 26

best_skip_pos = cur_skip_pos; 27

} 28

cur_skip_pos—-; 29

} 30

if (best_skip_len > 1){ 31

data_out [out_len++] = ((char) (best_skip_len<<4)) | 32
((char) (best_skip_pos>>8));

data_out[out_len++] = (char)best_skip_pos; 33

i += best_skip_len-1; 34

} else { 35

data_out [out_len++] = data_in[i]; 36

} 37

i++; 38

} 39

return(out_len); 40

} 41

Listing 4.10: LZSS Hardware Test Driver

uint32_t test_core(char *in, uint32_t in_len, char *out){ 1
uint32_t out_len = O; 2
volatile uint32_t *encoder =

(uint32_t*)XPAR_LVSS_ENCODER_BACKREF_O_BASEADDR;
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uint32_t padded_len = in_len + 14; 4

int 1i; 5

for(i = 0; i < 14; i++){ 6
*encoder = in[i];//Fill the encoder buffer with valid data 7

}

while(i < padded_len){ 9
*encoder = i < in_len 7 i<<16 | (uint32_t)in[i] : 0x0000;//Push a 10

byte in, padding the end of the string with null char
uint32_t res = *encoder;//Read result from core for that byte 11

uint32_t skip_len = res>>12;//bits 12 to 15 are length of substitution 12

if (skip_len > 1){ 13
out [out_len++] = (char) (res>>8); 14

out [out_len++] = (char)res; 15
while(--skip_len > O && i < padded_len){ 16

i++; 17

*encoder = i < in_len ? i<<16 | (uint32_t)in[i] : 0x0000; 18

} 19

i++; 20

} else { 21
out [out_len++] = in[i-14]; 22

i++; 23

b 24

} 25
*encoder = 0x100;//Software reset the encoder 26
return(out_len); 27
+ 28

As only the inner loop of the LZSS algorithm which is being accelerated here, it is ex-
pected that as the input data size grows the difference in performance between the hardware
and software implementations would also grow, up until the point at which the input data set
is larger than the sliding window of 4096 bytes. This is because as the input data size grows,
the amount of time spent executing the inner loop also grows, and as such the component of
total runtime that is spent in that inner loop grows. This is to the accelerators advantage, is at
can achieve in a single clock cycle within that inner loop what must take any processor atleast
3 x K clock cycles®, where K is the length of the prefix between the lookahead and a given
position in the sliding window. Assuming a low K of 5, we would expect the processor to
work through the input data roughly 15 times more slowly than the accelerator core. Some of
the factors causing the core to underperform in this respect are

e AXI bus request overhead for reads and writes ( 2 cycles per transaction)

>A comparison, an increment of the index into the input data and a jump. This calculation ignores jump
overhead and assumes loads are done as part of the comparison. The actual number of cycles is likely closer to
6or7.
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e software-side data handling to emit the encoded data stream (multiple writes and bit

shifts not seen in software implementation)

e overhead due to the pushing of 15 null characters into encoder after final byte of actual
data®

A longer running test with an input data size in the tens of kilobytes would provide a more

stringent assessment of the accelerator core performance, however, this is not possible due to

the limitations of the simulation based approach this report is unfortunately constrained to.

SThis is particularly expensive, and a direct result of the memory architecture. If the project was to continue,
a primary goal would be the removal of this overhead.
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Chapter 5

Ethics

According to [12], the requirements of this, mandatory, chapter are
e “All potential health and safety risks associated with the project [are] clearly identified

and assessed” and “Relevant directives / standards / regulatory bodies cited”

e “Clearly identified the [ethical] principle, describes the ethical problem/s in detail hav-
ing gathered pertinent facts & ascertains exactly what must be decided / what policy

should include”

e “Determines who should be involved in the decision making process & thoroughly re-
flects on the viewpoints of the stakeholders” and “Clarifies a number of alternatives &
evaluates each on the basis of whether or not there is interest & concern over the welfare
of all the stakeholders”

The goal of this chapter is to meet these requirements. Please see 6.2.1 for the author’s

opinion on the ethical implications of this chapter. Readers interested only in the technical

details of this report should skip this chapter, as it provides no value to them.

5.1 Identification of Health and Safety Risks

This project involved a relatively limited amount of equipment. The project work was done
using a laptop, occasionally plugged into a desktop setup with a monitor, keyboard and mouse.
The physical hardware uses a 12 Volt power supply, and as such, is unable to drive enough
current to be dangerous to the operator. The only health and safety risk this project posed was
the ergonomic risks posed by being a VDU user. The precautions taken to address this risk
were as per health and safety authority recommendations[13]. As no other health and safety

risks exist, this action sufficiently addresses all risks present as part of this project.

This section addresses the requirements: “All potential health and safety risks associated
with the project [are] clearly identified and assessed” and “Relevant directives / standards /

regulatory bodies [are] cited”.
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5.2 Environmental Impact

This project makes use of silicon-based microchips. The process of making these is involves
many toxic chemicals, which is bad for the environment. This project was also conducted
using a laptop, which consumes electricity to work. This electricity was generated by the
Electrical Supply Board of Ireland (ESB), which does not use renewable source to generate

the majority of its energy supply capacity. This is also bad for the environment.

There is an environmental benefit to be considered due to the decreased number of clock
cycles required to complete the data compression. Most modern FPGAs can be put into a deep
sleep mode, in order to conserve energy usage when not doing computation, and the ability
to complete a task faster allows a system to return to its low power mode sooner, thereby
saving energy (so called “race to sleep”). This is good for the environment, if the technology

developed here is deployed at a significant scale.

5.3 Ethical Principles

This section aims to “Clearly identified the [ethical] principle, describes the ethical problem/s
in detail having gathered pertinent facts & ascertains exactly what must be decided / what

policy should include”.

The ethical principle used to conduct an ethical analysis of this report is that of utilitari-
anism. The ethical quandry with this project, with respect to utilitarianism (particularly the
utilitarian goal of maximising good for most people, interpreted in the hedonistic sense as
maximising pleasure for the most people), is how well this project maximises pleasure. The
project was enjoyable for the author to work on, and as such, maximised pleasure well during
development. Unfortunately, it is possible readers will find this report displeasurable, and as
such, the final output of the project may be more displeasurable than pleasurable. In order to
avoid this, the policy around this project and report is that any reader who finds it displeasur-

able should stop reading immediately.

5.4 Stakeholder Determination and Alternative Evaluation

This section “Determines who should be involved in the decision making process & thor-
oughly reflects on the viewpoints of the stakeholders” and “Clarifies a number of alternatives
& evaluates each on the basis of whether or not there is interest & concern over the welfare of
all the stakeholders”.

The stakeholders of this project are: the author. No individuals or organisations beyond
the author are impacted by this project, and no individuals or organisations are impacted by

this report except by choice. As such, the author should be involved in the decision making
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process. Including others in the decision making process of this project is not necessary. What

follows is an attempt to “thoroughly reflects on the viewpoints of the stakeholders”.

The author’s viewpoint is roughly 5 feet and 6 inches above the ground!. The author is
not colourblind, and is not vision impaired in any known way, although some would argue
the author lacks foresight. The author’s viewpoint is that of an undergraduate electronic and
computer engineering student, specialising in systems and devices. The author’s view on this

project at the time of writing is explored in more depth in section 6.2.

Meaningful alternatives to the steps taken in this project, which would acheive the same
outcomes, do not exist.

Thus concludes this chapter, which is focused on the ethical implications of the work done
during the course of this project. To reiterate, this chapter is written to meet the requirements:

e “All potential health and safety risks associated with the project [are] clearly identified

and assessed” and “Relevant directives / standards / regulatory bodies cited”

e “Clearly identified the [ethical] principle, describes the ethical problem/s in detail hav-
ing gathered pertinent facts & ascertains exactly what must be decided / what policy

should include”

e “Determines who should be involved in the decision making process & thoroughly re-
flects on the viewpoints of the stakeholders” and “Clarifies a number of alternatives &
evaluates each on the basis of whether or not there is interest & concern over the welfare
of all the stakeholders”

Meeting these requirements, which this chapter does by addressing each individually and

fulfilling them as described. This is chapter was written as it is mandatory.

! Assuming a forehead size of roughly 3 inches
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Chapter 6
Conclusions and Further Research

This chapter is broken into two major sections, the first of which will provide an analysis of
the project as it stands and identify pathways to further development of the accelerator core,
while the second will be a brief informal commentary on the state of the project. The latter
section will be written in the first person, to make it clear it is the opinion of the author being

expressed, and that what is expressed is purely opinion.

6.1 Further Research Pathways

The project presented has a number of interesting threads on which one may pull:

1. The Huffman algorithm is not addressed in hardware as part of this report. While an
analysis of this algorithm showed it should not be the principle target for acceleration,
it still presents a potential avenue for improved total system performance.

2. The memory architecture of the sliding window was designed to target LUT based ram.
This allowed for very high performance, at the cost of the design using a percentage of
the available LUTRAM resource on the target device. It is possible some modifications
to the memory architecture and access patterns would allow the sliding window to be
implemented in a ram hard block on the device, massively reducing the footprint of the
accelerator core.

3. The accelerator as designed implements only the inner loop of the LZSS algorithm. Im-
plementing the full LZSS algorithm in hardware, including all of the algorithm features
implemented in software in listing 4.10, and reducing the software driver to a minimum,
would improve the performance further. This can be seen by the results in table 4.4, as
the hardware implementation runtime is improved as a result of increased optimization,
implying the software driver contributes significantly to algorithm runtme.

4. The AXI-Lite interface used in this project requires a minimum of 2 clock cycles per
write and 3 cycles for a read. Following the finding of a valid substitution, the software
driver pushes the number of bytes substituted into the core sequentially, without reading

between pushes. Using an AXI-Full interface instead of the AXI-Lite one used would
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allow this multi-byte push sequence to occur with the overhead of a single write.

5. With the use of AXI-Stream based direct memory accessing (DMA), the accelerator
core could be designed in such way that it does not require communication with the
processor subsystem in order to process the input data or emit the encoded dataset.
The processor could simply send the accelerator the memory location of the input data,
the length of the input data and a memory location to write the output to. Following
this, the core could do all data fetching, processing and emitting itself, reducing the
communication overhead significantly.

6. Additional signalling between the accelerator core and the processor would be useful,
in order to allow the processor to send signals to the accelerator indicating the final byte
of the input data has been pushed, for example, instead of the current implementation,
which requires that the software driver pad the input data with a trail of 15 null bytes.

Pursuing any of the above avenues for investigation would almost certainly yield improve-

ments in accelerator performance.

6.2 Project Retrospective

Hi, I’'m Oliver. My voice is a little different to the one you’ve been reading for the last while,
because this part is different. I’'m going to talk about how I feel about certain aspect of the
project, and what I would do differently, if I was to do all this again. I’ll pause here, briefly, to
acknowledge that this type of writing is discouraged in academia, and it also runs counter to
my understanding of the Engineers Ireland Code of Ethics, which prizes objectivity from its
members. However, I’'m not an engineer yet, and I think how engineering feels is important,
so as the one writing this report, I’ve decided to finish it like this'. If that bothers you, feel

free to not read this section, I won’t be offended. I understand that this is strange.

This project is the longest thing I have worked on continuously, and probably one of the
most complicated things I’ve ever built. I understand that may seem absurd the you, if you’re
a hardware engineer used to this kind of work, but I am not, and this felt more difficult than
anything I’ve done before. I think it’s important to admit when things are hard. For reference,
second place goes to a code coverage tool I once built, which had to work on a C++ codebase
with more than a million lines and more than 100 dynamic libraries, and couldn’t impose a
runtime overhead greater than 30%. I’m rather proud of that project, as it was the first piece of
engineering work I was paid to do, that I had design control of. I am also proud of it because
it worked. 1 think taking honest pride in the work I do is healthy, and I think others should do

the same.

I am not proud in an uncomplicated way of this project, although there are parts of it
I am proud of. As you may have been able to tell by the general tone of certain sections
of this report, I did not achieve all I had hoped to when I started working. I proposd this

IThis is also likely the last piece of writing I will do as an academic, so this feels appropriate.
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project® having worked for an FPGA vendor for the two summers prior to this one. I had been
working on implementation software verification, and seen some of the interesting technology
that existed in the FPGA space — technology so interesting that I wrote the project proposal
to give myself the opportunity to “play” with some of it. Due, I suspect, to inexperience with

digital design, I included in the proposal more than I now believe was possible for me to do.

The original goal I had for this project was a fully “hands-off” accelerator, which would
be similar to the AXI-Stream based solution described in the previous section. I set out with
the goal of building something I had internally been describing as “genuinely useful”. As
the college year went on, it became clear to me that I would not be able to dedicate the time
necessary to achieve that goal, while still maintaining a social life and keeping up with my
other academic responsibilities. When I realised this, and following some excellent advice
from my supervisor, I chose building an accelerator for the most computationally expensive
part of the DEFLATE algorithm pair as a “fallback™ goal.

I have reached that goal, as previously described, and I am proud of the work done so
far. Due to the global pandemic occurring at time of writing, it seems as though I will have
significantly more idle time following my end of semester examinations than I had expected.
I am considering spending some of that time taking the project as it currently stands and
converting it into a set of tutorial documents, which I would publish online in some blog
format. A resource like that would have been very beneficial to me when I was starting
this project, and I think creating it would feel like doing something genuinely useful. That
feeling of doing meaningful work is something I find important, more important often than

the technology or problem being solved itself, and I expect many other engineers do too.

That being said, I do not view this project as finished, for any useful definition of the
word>. There is still work to be done; I am unhappy with both the performance gained and
limited benchmarking conducted thus far. The source files for the project have been released
under an open source license[14], and I intend to continue to make improvements to the

hardware and software drivers of the accelerator.

I do not expect this hardware to be useful in the broader world, although perhaps there is
someone out there developing an embedded system which needs to compress data extremely
quickly. If that’s you, and you’re able to share what it is you’re building, please tell me, I'd
love to know. I could paint a picture of some long-term deployment sensor system which
wakes from sleep every second to sample something and every thousand samples compresses
the previous thousand samples in order to save on storage space, which needs to compress
that data as fast as possible in order to spend as long as it can in a low power sleep mode, but I

find that use case unlikely. I would like to believe that this report, and the tutorial documents

ZBoth the original proposal, for a discrete fourier transform accelerator, and the final proposal, which is the
title of this project.

3The project is “finished” insofar as this report is submitted and will be used as part of an academic assess-
ment.
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should I write them, would be useful to those wishing to learn how to build systems like this,

but it would be dishonest to say I am confident they would be.

I suppose that’s where I’ve ended up; I am pleased with the quality of what I have built but
dissatisfied with it because I feel it is unfinished, and I am unconvinced of its direct utility and
uncertain but hopeful of its indirect utility. I’ll also so I am extremely pleased with how much
I have learned while working on this project. I am now comfortable working with and debug-
ging heterogeneous FPGA based systems, at least Xilinx flavoured ones running standalone
applications. From the “vantage point” of the end of this report, I can see multiple areas of
the heterogeneous systems field I would like to explore; embedded linux based systems, AXI-
Stream and Full, and more complex hardware accelerator cores, to name a few. I am satisfied
that I have fulfilled my original desire to spend time “playing” with the technology I found so

interesting at the start of the project.

6.2.1 A Minor Rant

Please skip this subsection unless you would like to know why the ethics chapter of this report

is, well, lacklustre at best.

I find the mandatory chapter on ethics in this report distasteful. Engineers are not ethicists,
and my training thusfar has not equipped me to write about the ethical implications of a fairly
banal optimization project on an algorithm from the 70s. I would remove it completely. I find
the assessment framework used for that chapter encourages me to engage in dishonest writing,

in which I place undue importance on tiny effects, e.g.:

There is an environmental benefit to be considered due to the decreased number
of clock cycles required to complete the data compression. Most modern FPGAs
can be put into a deep sleep mode, in order to conserve energy usage when not
doing computation, and the ability to complete a task faster allows a system to
return to its low power mode sooner, thereby saving energy (so called “race to

sleep”).

The above is technically true, but practically dishonest, as the actual low-power system
would not use an FPGA at all, due to their power consumption being significantly higher than
dedicated hardware*. Additionally, the power saved by improved data compression perfor-
mance could only be meaningful if the solution I developed was deployed at a massive scale,

and the companies with the scale necessary prefer commodity hardware for economic reasons.

The honest answer to the question “What are the ethical implications of this work?”’, when
asked to an undergraduate writing a report on a project to design hardware to implement an

algorithm from the 70s, is “There are none.”. Very few people will read this report, fewer still

“Due to all the increased transistors required to implement the hardware flexibility.
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will read the source files for the hardware and software developed during the project. I would
be willing to bet my degree that nobody will build anything incorporating them. Having
a required ethics section is window dressing, and it undermines the importance of ethical

reasoning in the field.
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Appendix A

Digressions and side notes

A.1 LZSS Comparisons Required for a Given N

The listing A.1 is a short python script which was used to generate table A.1, for varying
values of N. As can be seen in figure A.l, the relationship between N and the number of

comparisons required is exponential.

Listing A.1: LZSS Comparison Count Calculator

4096
K =15
10

comp_count

push_count
for i in range(N):
comp_count += Kxpush_count

push_count += 1 if push_count < M else O

print (comp_count)
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Table A.1: LZSS N vs Comparison Count

N | Comparisons Required
1 0
2 15
3 45
4 90
5 150
6 225
7 315
8 420
9 540
10 675
300000 A
250000 A
L, 200000
=
E 150000 -
=
E
S 100000 -
50000 -
0

o 25 50 ] 100 125 150 175 200
M

Figure A.1: LZSS N vs Comparison Count

A.2 Verilog Syntactic Sugar

Please see listing A.2 for examples and explanations of Verilog for loops, array slicing

and ternary operators.

Listing A.2: Verilog Syntactic Sugar Examples

//For loops are a shorthand way of writing normal assignment expressions
//They may be placed in generate blocks or always blocks. Generally
//generate blocks are used for purely combinatorial logic, and always
//blocks for clocked logic.

wire [3:0] A, B;

generate

genvar i;//a genvar is a variable which can only be used in a generate
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block.

for(i = 0; i < 4; i++) begin

Appendix A - Digressions and side notes

//Note the use of assign as this is a purely combinatorial statement

assign B[i] = A[i];
end

endgenerate

//The previous generate block is directly equivalent to this:

assign B[0] = A[0];
assign B[1] = A[1];
assign B[2] = A[2];
assign B[3] = A[3];

//For loops may be considered a way to "roll" up a series of assignments

//A ternary operator is shorthand for an if-else statement. This:

output wire A;
input wire B, C, D;

assign A =B 7?7 C : D;

//Is equivalent to this:

always_comb begin

if (B) begin

A =C;

end else begin
A = D;

end

end

//Note that the above required an "alwyas_comb" block to allow the use of

//if/else, which can normally only be used in an always block

//An array slice is shorthand for assigning single wires within an array

//to something. For example:

input wire [7:0] A;

input wire nibble_select;

output wire [3:0] B;

//This:

assign B[0] = nibble_select
assign B[1] = nibble_select
assign B[2] = nibble_select
assign B[3] = nibble_select

//is equivalent to this:

? A[4]
? A[5]
? Al6]
? A[T7]

: A[O];
: A[1];
: A[2];
: A[3];
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50
assign B = nibble_select 7 A[7:4] : A[3:0]; 51

A.3 Project Source Files

Please note that the source files for the hardware and software developed during the course of

this project are distributed under the MIT open source license. See citation [14].
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Glossary

For the sake of brevity, please note that the following applies to all sections of the report,

unless otherwise stated:

All discussions of data and signals assumes a binary representation
All references to integers refers to unsigned 32 bit integers ( uint32_t in C parlance)
All references to characters or “chars” refers to an 8 bit byte

Device means the silicon chip in use, for this project a ”Zynq UltraScale+”, part number

xczu3eg-sbva484-1-e
Board refers to the ”Ultra96v2” development board
All work was done using the Vivado design suite, version 2019.1, WebPack edition
All programming of the board was done using a ThinkPad T430, running Kubuntu 19.10

For the purposes of this report, discussion of FPGA fundamentals will be in line with
Xilinx FPGA technology, including terminology such as ”Configurable Logic Blocks
(CLBS’s)” and ”Basic Elements of Logic (BEL’s)”

Numbers prefixed with ”0x” are present in hexadecimal format, those presented in ”0b”

are in binary format.
PS — Processor subsystem

PL — Programmable logic
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